

#### LP3963/LP3966

# 3A Fast Ultra Low Dropout Linear Regulators

#### **General Description**

The LP3963/LP3966 series of fast ultra low-dropout linear regulators operate from a +2.5V to +7.0V input supply. Wide range of preset output voltage options are available. These ultra low dropout linear regulators respond very quickly to step changes in load which makes them suitable for low voltage microprocessor applications. The LP3963/LP3966 are developed on a CMOS process which allows low quiescent current operation independent of output load current. This CMOS process also allows the LP3963/LP3966 to operate under extremely low dropout conditions.

**Dropout Voltage:** Ultra low dropout voltage; typically 80mV at 300mA load current and 800mV at 3A load current.

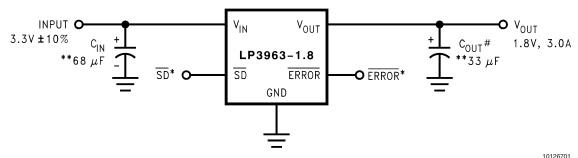
Ground Pin Current: Typically 6mA at 3A load current.

**Shutdown Mode:** Typically 15µA quiescent current when the shutdown pin is pulled low.

**Error Flag:** Error flag goes low when the output voltage drops 10% below nominal value (for LP3963).

**SENSE:** Sense pin improves regulation at remote loads. (For LP3966)

**Precision Output Voltage:** Multiple output voltage options are available ranging from 1.2V to 5.0V and adjustable (LP3966), with a guaranteed accuracy of  $\pm 1.5\%$  at room temperature, and  $\pm 3.0\%$  over all conditions (varying line, load, and temperature).


#### **Features**

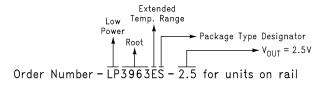
- Ultra low dropout voltage
- Low ground pin current
- Load regulation of 0.06%
- 15µA quiescent current in shutdown mode
- Guaranteed output current of 3A DC
- Available in TO-263 and TO-220 packages
- Output voltage accuracy ± 1.5%
- Error flag indicates output status (LP3963)
- Sense option improves load regulation (LP3966)
- Minimum output capacitor requirements
- Overtemperature/overcurrent protection
- -40°C to +125°C junction temperature range

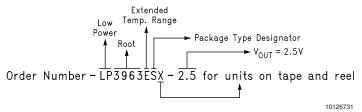
#### **Applications**

- Microprocessor power supplies
- GTL, GTL+, BTL, and SSTL bus terminators
- Power supplies for DSPs
- SCSI terminator
- Post regulators
- High efficiency linear regulators
- Battery chargers
- Other battery powered applications

### **Typical Application Circuits**




\* $\overline{\text{SD}}$  and  $\overline{\text{ERROR}}$  pins must be pulled high through a 10k $\Omega$  pull-up resistor. Connect the  $\overline{\text{ERROR}}$  pin to ground if this function is not used. See applications section for more information.


<sup>\*\*</sup> See Application Hints

# Pin Descriptions for TO220-5 and TO263-5 Packages

| Pin # | LP3963           |                | LP3966           |                       |  |
|-------|------------------|----------------|------------------|-----------------------|--|
|       | Name             | Function       | Name             | Function              |  |
| 1     | SD               | Shutdown       | SD               | Shutdown              |  |
| 2     | V <sub>IN</sub>  | Input Supply   | V <sub>IN</sub>  | Input Supply          |  |
| 3     | GND              | Ground         | GND              | Ground                |  |
| 4     | V <sub>OUT</sub> | Output Voltage | V <sub>OUT</sub> | Output Voltage        |  |
| 5     | ERROR            | ERROR Flag     | SENSE/ADJ        | Remote Sense          |  |
|       |                  |                |                  | Pin/Output Adjust Pin |  |

# **Ordering Information**





Package Type Designator is "T" for TO220 package, and "S" for TO263 package.

**TABLE 1. Package Marking and Ordering Information** 

| Output  |               | Description       | Package |                 |               |
|---------|---------------|-------------------|---------|-----------------|---------------|
| Voltage | Order Number  | (Current, Option) | Туре    | Package Marking | Supplied As:  |
| 5.0     | LP3963ES-5.0  | 3A, Error Flag    | TO263-5 | LP3963ES-5.0    | Rail          |
| 5.0     | LP3963ESX-5.0 | 3A, Error Flag    | TO263-5 | LP3963ESX-5.0   | Tape and Reel |
| 3.3     | LP3963ES-3.3  | 3A, Error Flag    | TO263-5 | LP3963ES-3.3    | Rail          |
| 3.3     | LP3963ESX-3.3 | 3A, Error Flag    | TO263-5 | LP3963ES-3.3    | Tape and Reel |
| 2.5     | LP3963ES-2.5  | 3A, Error Flag    | TO263-5 | LP3963ES-2.5    | Rail          |
| 2.5     | LP3963ESX-2.5 | 3A, Error Flag    | TO263-5 | LP3963ES-2.5    | Tape and Reel |
| 1.8     | LP3963ES-1.8  | 3A, Error Flag    | TO263-5 | LP3963ES-1.8    | Rail          |
| 1.8     | LP3963ESX-1.8 | 3A, Error Flag    | TO263-5 | LP3963ES-1.8    | Tape and Reel |
| 5.0     | LP3966ES-5.0  | 3A, SENSE         | TO263-5 | LP3966ES-5.0    | Rail          |
| 5.0     | LP3966ESX-5.0 | 3A, SENSE         | TO263-5 | LP3966ESX-5.0   | Tape and Reel |
| 3.3     | LP3966ES-3.3  | 3A, SENSE         | TO263-5 | LP3966ES-3.3    | Rail          |
| 3.3     | LP3966ESX-3.3 | 3A, SENSE         | TO263-5 | LP3966ES-3.3    | Tape and Reel |
| 2.5     | LP3966ES-2.5  | 3A, SENSE         | TO263-5 | LP3966ES-2.5    | Rail          |
| 2.5     | LP3966ESX-2.5 | 3A, SENSE         | TO263-5 | LP3966ES-2.5    | Tape and Reel |
| 1.8     | LP3966ES-1.8  | 3A, SENSE         | TO263-5 | LP3966ES-1.8    | Rail          |
| 1.8     | LP3966ESX-1.8 | 3A, SENSE         | TO263-5 | LP3966ES-1.8    | Tape and Reel |
| ADJ     | LP3966ES-ADJ  | 3A, ADJ           | TO263-5 | LP3966ES-ADJ    | Rail          |
| ADJ     | LP3966ESX-ADJ | 3A, ADJ           | TO263-5 | LP3966ES-ADJ    | Tape and Reel |
| 5.0     | LP3963ET-5.0  | 3A, Error Flag    | TO220-5 | LP3963ET-5.0    | Rail          |
| 3.3     | LP3963ET-3.3  | 3A, Error Flag    | TO220-5 | LP3963ET-3.3    | Rail          |
| 2.5     | LP3963ET-2.5  | 3A, Error Flag    | TO220-5 | LP3963ET-2.5    | Rail          |
| 1.8     | LP3963ET-1.8  | 3A, Error Flag    | TO220-5 | LP3963ET-1.8    | Rail          |

#### **Absolute Maximum Ratings** (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature Range  $-65^{\circ}\text{C}$  to  $+150^{\circ}\text{C}$ 

Lead Temperature

(Soldering, 5 sec.) 260°C ESD Rating (Note 3) 2 kV

Power Dissipation (Note 2) Internally Limited Input Supply Voltage (Survival) -0.3V to +7.5V

Shutdown Input Voltage

(Survival) -0.3V to V<sub>IN</sub>+0.3V

Output Voltage (Survival), (Note

6), (Note 7) -0.3V to +7.5V

I<sub>OUT</sub> (Survival) Short Circuit Protected

Maximum Voltage for ERROR

Pin V<sub>IN</sub>+0.3V

Maximum Voltage for SENSE Pin V<sub>OUT</sub>+0.3V

### **Operating Ratings**

Input Supply Voltage (Operating),

(Note 12) 2.5V to 7.0V

Shutdown Input Voltage

(Operating) -0.3V to  $V_{IN}+0.3V$ 

Maximum Operating Current (DC) 3A

Operating Junction Temp. Range -40°C to +125°C

# Electrical Characteristics LP3963/LP3966

Limits in standard typeface are for  $T_J$  = 25°C, and limits in **boldface type** apply over the **full operating temperature range**. Unless otherwise specified:  $V_{IN} = V_{O(NOM)} + 1.5V$ ,  $I_L$  = 10 mA,  $C_{OUT}$  =33 $\mu$ F,  $V_{SD} = V_{IN}$ -0.3V.

| Symbol                             | Parameter                                           | Conditions                                                        | Typ<br>(Note 4)     | LP3963/6 (Note 5)     |                       | Units |
|------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------|---------------------|-----------------------|-----------------------|-------|
|                                    |                                                     |                                                                   |                     | Min                   | Max                   |       |
| V <sub>O</sub>                     | Output Voltage Tolerance (Note 8)                   | $V_{OUT}$ +1.5V < $V_{IN}$ < 7.0V<br>10 mA < $I_{L}$ < 3A         | 0                   | -1.5<br><b>-3.0</b>   | +1.5<br>+3.0          | %     |
| $V_{ADJ}$                          | Adjust Pin Voltage (ADJ version)                    | 10 mA $\leq I_L \leq 3A$<br>$V_{OUT} +1.5V \leq V_{IN} \leq 7.0V$ | 1.216               | 1.198<br><b>1.180</b> | 1.234<br><b>1.253</b> | V     |
| $\Delta V_{OL}$                    | Output Voltage Line<br>Regulation (Note 8)          | V <sub>OUT</sub> +1.5V < V <sub>IN</sub> < 7.0V                   | 0.02<br><b>0.06</b> |                       |                       | %     |
| $\Delta V_{O}/\Delta I_{OUT}$      | Output Voltage Load<br>Regulation<br>(Note 8)       | 10 mA < I <sub>L</sub> < 3A                                       | 0.06<br><b>0.01</b> |                       |                       | %     |
| V <sub>IN</sub> - V <sub>OUT</sub> | Dropout Voltage<br>(Note 10)                        | I <sub>L</sub> = 300 mA                                           | 80                  |                       | 100<br><b>120</b>     | - mV  |
|                                    |                                                     | I <sub>L</sub> = 3A                                               | 800                 |                       | 1000<br><b>1200</b>   |       |
| I <sub>GND</sub>                   | Ground Pin Current In<br>Normal Operation Mode      | I <sub>L</sub> = 300 mA                                           | 5                   |                       | 9<br><b>10</b>        | m A   |
|                                    |                                                     | I <sub>L</sub> = 3A                                               | 6                   |                       | 14<br><b>15</b>       | mA    |
| I <sub>GND</sub>                   | Ground Pin Current In<br>Shutdown Mode<br>(Note 11) | V <sub>SD</sub> ≤ 0.2V                                            | 15                  |                       | 25<br><b>75</b>       | μА    |
| I <sub>O(PK)</sub>                 | Peak Output Current                                 | (Note 2)                                                          | 4.5                 | 4<br><b>3.5</b>       |                       | А     |
| SHORT CIRC                         | UIT PROTECTION                                      |                                                                   |                     |                       |                       |       |
| I <sub>sc</sub>                    | Short Circuit Current                               |                                                                   | 5.5                 |                       |                       | Α     |
| OVER TEMPE                         | ERATURE PROTECTION                                  |                                                                   |                     |                       |                       |       |
| Tsh(t)                             | Shutdown Threshold                                  |                                                                   | 165                 |                       |                       | °C    |
| Tsh(h)                             | Thermal Shutdown<br>Hysteresis                      |                                                                   | 10                  |                       |                       | °C    |

# Electrical Characteristics LP3963/LP3966 (Continued)

Limits in standard typeface are for  $T_J = 25\,^{\circ}C$ , and limits in **boldface type** apply over the **full operating temperature range**. Unless otherwise specified:  $V_{IN} = V_{O(NOM)} + 1.5V$ ,  $I_L = 10$  mA,  $C_{OUT} = 33\mu F$ ,  $V_{SD} = V_{IN} - 0.3V$ .

| Symbol               | Parameter              | Conditions                       | Typ<br>(Note 4) | LP3963/6 (Note 5)    |     | Units        |
|----------------------|------------------------|----------------------------------|-----------------|----------------------|-----|--------------|
|                      |                        |                                  |                 | Min                  | Max |              |
| SHUTDOWN             | INPUT                  | •                                | •               |                      |     | •            |
| $V_{SDT}$            | Shutdown Threshold     | Output = High                    | V <sub>IN</sub> | V <sub>IN</sub> -0.3 |     | V            |
|                      | Shuldown Threshold     | Output = Low                     | 0               |                      | 0.2 |              |
| T <sub>dOFF</sub>    | Turn-off delay         | I <sub>L</sub> = 3A              | 20              |                      |     | μs           |
| T <sub>dON</sub>     | Turn-on delay          | I <sub>L</sub> = 3A              | 25              |                      |     | μs           |
| I <sub>SD</sub>      | SD Input Current       | $V_{SD} = V_{IN}$                | 1               |                      |     | nA           |
| ERROR FLA            | G                      |                                  | '               |                      |     | 1            |
| V <sub>T</sub>       | Threshold              | (Note 9)                         | 10              | 5                    | 16  | %            |
| V <sub>TH</sub>      | Threshold Hysteresis   | (Note 9)                         | 5               | 2                    | 8   | %            |
| V <sub>EF(Sat)</sub> | Error Flag Saturation  | $I_{sink} = 100\mu A$            | 0.02            |                      | 0.1 | V            |
| Td                   | Flag Reset Delay       |                                  | 1               |                      |     | μs           |
| I <sub>lk</sub>      | Error Flag Pin Leakage |                                  | 1               |                      |     | nA           |
|                      | Current                |                                  |                 |                      |     |              |
| I <sub>max</sub>     | Error Flag Pin Sink    | V <sub>Error</sub> = <b>0.5V</b> | 1               |                      |     | mA           |
|                      | Current                |                                  |                 |                      |     |              |
| AC PARAME            | TERS                   |                                  |                 |                      |     |              |
|                      |                        | $V_{IN} = V_{OUT} + 1.5V$        | 60              |                      |     |              |
| PSRR Ri              | Ripple Rejection       | C <sub>OUT</sub> = 100uF         |                 |                      |     |              |
|                      |                        | $V_{OUT} = 3.3V$                 |                 |                      |     | dB           |
|                      |                        | $V_{IN} = V_{OUT} + 0.3V$        | 40              |                      |     | ub           |
|                      |                        | C <sub>OUT</sub> = 100uF         |                 |                      |     |              |
|                      |                        | V <sub>OUT</sub> = 3.3V          |                 |                      |     |              |
| $\rho_{n(I/f}$       | Output Noise Density   | f = 120Hz                        | 0.8             |                      |     | μV           |
| 0                    | Output Noise Voltage   | BW = 10Hz - 100kHz               | 150             |                      |     | μV (rms)     |
| e <sub>n</sub>       | (rms)                  | BW = 300Hz - 300kHz              | 100             |                      |     | ] µv (IIIIS) |

Note 1: Absolute maximum ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is intended to be functional, but does not guarantee specific performance limits. For guaranteed specifications and test conditions, see Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: At elevated temperatures, devices must be derated based on package thermal resistance. The devices in TO220 package must be derated at  $\theta_{jA} = 50$  °C/W (with 0.5in<sup>2</sup>, 1oz. copper area), junction-to-ambient (with no heat sink). The devices in the TO263 surface-mount package must be derated at  $\theta_{jA} = 60$  °C/W (with 0.5in<sup>2</sup>, 1oz. copper area), junction-to-ambient. See Application Hints.

Note 3: The human body model is a 100pF capacitor discharged through a  $1.5k\Omega$  resistor into each pin.

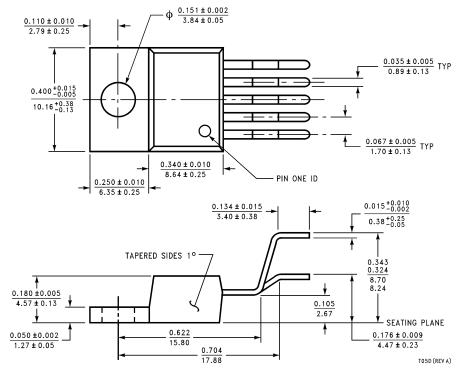
Note 4: Typical numbers are at 25°C and represent the most likely parametric norm.

Note 5: Limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's Average Outgoing Quality Level (AOQL).

Note 6: If used in a dual-supply system where the regulator load is returned to a negative supply, the LP396X output must be diode-clamped to ground.

Note 7: The output PMOS structure contains a diode between the  $V_{IN}$  and  $V_{OUT}$  terminals. This diode is normally reverse biased. This diode will get forward biased if the voltage at the output terminal is forced to be higher than the voltage at the input terminal. This diode can typically withstand 200mA of DC current and 1Amp of peak current.

**Note 8:** Output voltage line regulation is defined as the change in output voltage from the nominal value due to change in the input line voltage. Output voltage load regulation is defined as the change in output voltage from the nominal value due to change in load current. The line and load regulation specification contains only the typical number. However, the limits for line and load regulation are included in the output voltage tolerance specification.


Note 9: Error Flag threshold and hysteresis are specified as percentage of regulated output voltage. See Application Hints.

Note 10: Dropout voltage is defined as the minimum input to output differential voltage at which the output drops 2% below the nominal value. Dropout voltage specification applies only to output voltages of 2.5V and above. For output voltages below 2.5V, the drop-out voltage is nothing but the input to output differential, since the minimum input voltage is 2.5V.

Note 11: This specification has been tested for  $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 85^{\circ}\text{C}$  since the temperature rise of the device is negligible under shutdown conditions.

Note 12: The minimum operating value for  $V_{IN}$  is equal to either  $[V_{OUT(NOM)} + V_{DROPOUT}]$  or 2.5V, whichever is greater.

#### Physical Dimensions inches (millimeters) unless otherwise noted



TO220 5-lead, Molded, Stagger Bend Package (TO220-5) NS Package Number T05D

For Order Numbers, refer to the "Ordering Information" section of this document.



TO263 5-Lead, Molded, Surface Mount Package (TO263-5) NS Package Number TS5B

For Order Numbers, refer to the "Ordering Information" section of this document.